IGAOR and multisplitting IGAOR methods for linear complementarity problems
نویسندگان
چکیده
منابع مشابه
Modulus-based synchronous multisplitting iteration methods for linear complementarity problems
To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based synchronous multisplitting iteration method and the corresponding symmetric modulus-based multisplitting relaxation methods. The convergence theorems are established when the system matrix is an H+-matrix, which improve the existing converg...
متن کاملA multisplitting method for symmetric linear complementarity problems
Over the years, many methods for solving the linear complementarity problem (LCP) have been developed. Most of these methods have their origin in solving a system of linear equations. In particular, much attention has recently been paid on the class of iterative methods called the splitting method, which is an extension of the matrix splitting method for solving a system of linear equations suc...
متن کاملGlobal Modulus-Based Synchronous Multisplitting Multi-Parameters TOR Methods for Linear Complementarity Problems
In 2013, Bai and Zhang constructed modulus-based synchronous multisplitting methods for linear complementarity problems and analyzed the corresponding convergence. In 2014, Zhang and Li studied the weaker convergence results based on linear complementarity problems. In 2008, Zhang et al. presented global relaxed non-stationary multisplitting multi-parameter method by introducing some parameters...
متن کاملNonstationary Relaxed Multisplitting Methods for Solving Linear Complementarity Problems with H−matrices
In this paper we consider some non stationary relaxed synchronous and asynchronous multisplitting methods for solving the linear complementarity problems with their coefficient matrices being H−matrices. The convergence theorems of the methods are given,and the efficiency is shown by numerical tests.
متن کاملImproved infeasible-interior-point algorithm for linear complementarity problems
We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2011
ISSN: 0377-0427
DOI: 10.1016/j.cam.2010.12.005